• Нпз установка гидрокрекинга. Проект изготовления и поставки реакторов гидрокрекинга на «РН-Туапсинский НПЗ» (ОАО «НК «Роснефть»). Гидрогенизация керосиновых фракций

    ПАО «Орскнефтеоргсинтез», или Орский НПЗ, входит в промышленно-финансовую Группу «САФМАР» Михаила Гуцериева. Завод работает в Оренбургской области, снабжает свой регион и прилегающие к нему районы нефтепродуктами – моторным топливом, мазутом и битумом. Вот уже несколько лет на предприятии ведется масштабная модернизация, по итогам которой завод на долгие годы останется в числе лидеров нефтеперерабатывающей промышленности.

    В настоящее время на Орском НПЗ приступили к тестовому запуску самого значимого, из вновь строящихся объектов, Комплекса гидрокрекинга. К июню на данном объекте закончились строительно-монтажные и пуско-наладочные работы «в холостую» и отладка наладка оборудования «под нагрузкой». Общий объем инвестиций в строительство данного Комплекса составит более 43 млрд. рублей, при финансировании проекта используются как собственные, так и заемные средства.

    В ближайшее время на установку будет принято сырье и начнется отладка всех процессов для получения продукции. Тестовый режим необходим для отладки технологического режима на всех объектах комплекса Гидрокрекинга, получения продукции соответствующего качества, а также, в том числе для подтверждения гарантийных показателей, заложенных лицензиаром Shell Global Solutions International B.V. (Shell)

    Наладка режима осуществляется силами подразделений ОНОСа с привлечением подрядных организаций по пуско-наладке и в присутствии представителя лицензиара Shell. Основной акционер ОНОСа компания «ФортеИнвест» планирует завершить эксплуатацию в тестовом режиме и вывести объект в промышленную эксплуатацию уже в июле текущего года. Таким образом, несмотря на непростую экономическую ситуацию в стране, Комплекс гидрокрекинга планируется построить в крайне быстрые сроки – первые работы по проекту начались в середине 2015 года, а на проектную мощность гидрокрекинг выйдет ориентировочно через 33 месяца после начала реализации проекта.

    Пуск в эксплуатацию объектов модернизации выведет Орский НПЗ на новый уровень переработки, позволив увеличить ее глубину до 87%. Отбор светлых нефтепродуктов возрастет до 74%. По итогам данного этапа Программы модернизации изменится товарная линейка предприятия: вакуумный газойль перестанет быть товарным продуктом, так как станет сырьем для установки гидрокрекинга; значительно увеличится выпуск авиационного керосина и дизельного топлива класса Евро 5.

    Акционеры Орского НПЗ уделяют большое внимание развитию предприятия на длительную перспективу. Глобальная модернизация производства, которая ведется с 2012 года, имеет огромное значение не только для предприятия, но и для региона, ведь завод является одним из градообразующих предприятий г. Орск. В настоящее время на НПЗ работе порядка 2,3 тысяч человек – жителей города и ближайших поселков. Обновление производства имеет большое значение для социальной сферы города – это создание новых рабочих мест, рост числа квалифицированного персонала, задействованного на производстве, а, следовательно, увеличивая общего уровня жизни работников завода и города.

    ПАО «Орскнефтеоргсинтез» ‒ нефтеперерабатывающее предприятие мощностью 6 млн. тонн в год. Набор технологических процессов завода позволяет выпускать около 30-ти видов различной продукции. В их числе автобензины класса 4 и 5; реактивное топливо РТ; дизельное топливо летних и зимних видов класса 4 и 5; дорожные и строительные битумы; мазуты. В 2017 г. объем переработки нефти составил 4 млн. 744 тыс. тонн.

    В состав Комплекса гидрокрекинга входят непосредственно установка гидрокрекинга, установка производства серы с блоком грануляции и отгрузки, блок химводоподготовки, блок оборотного водоснабжения и азотная станция №2. Строительство Комплекса гидрокрекинга вакуумного газойля началось в 2015 году, его запуск намечен на лето 2018 года.


    4. Каталитический крекинг
    Каталитический крекинг - важнейший процесс нефтепереработки, существенно влияющий на эффективность НПЗ в целом. Сущность процесса заключается в разложении углеводородов, входящих в состав сырья (вакуумного газойля) под воздействием температуры в присутствии цеолитсодержащего алюмосиликатного катализатора. Целевой продукт установки КК - высокооктановый компонент бензина с октановым числом 90 пунктов и более, его выход составляет от 50 до 65% в зависимости от используемого сырья, применяемой технологии и режима. Высокое октановое число обусловлено тем, что при каткрекинге происходит также изомеризация. В ходе процесса образуются газы, содержащие пропилен и бутилены, используемые в качестве сырья для нефтехимии и производства высокооктановых компонентов бензина, легкий газойль - компонент дизельных и печных топлив, и тяжелый газойль - сырьё для производства сажи, или компонент мазутов.
    Мощность современных установок в среднем - от 1,5 до 2,5 млн тонн, однако на заводах ведущих мировых компаний существуют установки мощностью и 4,0 млн. тонн.
    Ключевым участком установки является реакторно-регенераторный блок . В состав блока входит печь нагрева сырья, реактор, в котором непосредственно происходят реакции крекинга, и регенератор катализатора. Назначение регенератора - выжиг кокса, образующегося в ходе крекинга и осаждающегося на поверхности катализатора. Реактор, регенератор и узел ввода сырья связаны трубопроводами (линиями пневмотранспорта) , по которым циркулирует катализатор.
    Наиболее удачная, хотя и не новая, отечественная технология используется на установках мощностью 2 млн. тонн в Уфе, Омске, Москве. Схема реакторно-регенераторного блока представлена на рис.14. На рис.15 приведена фотография аналогичной установки по технологии компании ExxonMobil.
    Мощностей каталитического крекинга на российских НПЗ в настоящее время явно недостаточно, и именно за счёт ввода новых установок решается проблема с прогнозируемым дефицитом бензина. При реализации декларируемых нефтяными компаниями программ реконструкции НПЗ, данный вопрос полностью снимается.
    За последние несколько лет в Рязани и Ярославле реконструированы однотипные сильно изношенные и устаревшие установки, введенные в советский период, а в Нижнекамске построена новая. При этом использованы технологии компаний Stone&Webster и Texaco.

    Рис.14. Схема реакторно-регенераторного блока установки каталитического крекинга

    Сырьё с температурой 500-520°С в смеси с пылевидным катализатором движется по лифт-реактору вверх в течение 2-4 секунд и подвергается крекингу. Продукты крекинга поступают в сепаратор , расположенный сверху лифт-реактора, где завершаются химические реакции и происходит отделение катализатора, который отводится из нижней части сепаратора и самотёком поступает в регенератор, в котором при температуре 700°С осуществляется выжиг кокса. После этого восстановленный катализатор возвращается на узел ввода сырья. Давление в реакторно-регенераторном блоке близко к атмосферному. Общая высота реакторно-регенераторного блока составляет от 30 до 55 м, диаметры сепаратора и регенератора - 8 и 11 м соответственно для установки мощностью 2,0 млн тонн.
    Продукты крекинга уходят с верха сепаратора, охлаждаются и поступают на ректификацию.
    Каткрекинг может входить в состав комбинированных установок, включающих предварительную гидроочистку или легкий гидрокрекинг сырья, очистку и фракционирование газов.

    Фотографии установок каталитического крекинга

    Рис.16. Реакторный блок каталитического крекинга по технологии ExxonMobil. В правой части - реактор, слева от него - регенератор.

    5. Гидрокрекинг
    Гидрокрекинг - процесс, направленный на получение высококачественных керосиновых и дизельных дистиллятов, а также вакуумного газойля путём крекинга углеводородов исходного сырья в присутствии водорода. Одновременно с крекингом происходит очистка продуктов от серы, насыщение олефинов и ароматических соединений, что обуславливает высокие эксплуатационные и экологические характеристики получаемых топлив. Например, содержание серы в дизельном дистилляте гидрокрекинга составляет миллионные доли процента. Получаемая бензиновая фракция имеет невысокое октановое число, её тяжёлая часть может служить сырьём риформинга. Гидрокрекинг также используется в масляном производстве для получения высококачественных основ масел, близких по эксплуатационным характеристикам к синтетическим.
    Гамма сырья гидрокрекинга довольно широкая - прямогонный вакуумный газойль, газойли каталитического крекинга и коксования, побочные продукты маслоблока, мазут, гудрон.
    Установки гидрокрекинга, как правило, строятся большой единичной мощности - 3-4 млн. тонн в год по сырью.
    Обычно объёмов водорода, получаемых на установках риформинга, недостаточно для обеспечения гидрокрекинга, поэтому на НПЗ сооружаются отдельные установки по производству водорода путём паровой конверсии углеводородных газов.
    Технологические схемы принципиально схожи с установками гидроочистки - сырьё, смешанное с водородосодержащим газом (ВСГ), нагревается в печи, поступает в реактор со слоем катализатора, продукты из реактора отделяются от газов и поступают на ректификацию. Однако, реакции гидрокрекинга протекают с выделением тепла, поэтому технологической схемой предусматривается ввод в зону реакции холодного ВСГ, расходом которого регулируется температура. Гидрокрекинг - один из самых опасных процессов нефтепереработки, при выходе температурного режима из-под контроля, происходит резкий рост температуры, приводящий к взрыву реакторного блока.
    Аппаратурное оформление и технологический режим установок гидрокрекинга различаются в зависимости от задач, обусловленных технологической схемой конкретного НПЗ, и используемого сырья.
    Например, для получения малосернистого вакуумного газойля и относительно небольшого количества светлых (лёгкий гидрокрекинг), процесс ведётся при давлении до 80 атм на одном реакторе при температуре около 350°С.
    Для максимального выхода светлых (до 90%, в том числе до 20% бензиновой фракции на сырьё) процесс осуществляется на 2-х реакторах. При этом, продукты после первого реактора поступают в ректификационную колонну, где отгоняются полученные в результате химических реакций светлые, а остаток поступает во второй реактор, где повторно подвергается гидрокрекингу. В данном случае, при гидрокрекинге вакуумного газойля давление составляет около 180 атм, а при гидрокрекинге мазута и гудрона - более 300. Температура процесса, соответственно, варьируется от 380 до 450°С и выше.
    В России до последнего времени процесс гидрокрекинга не использовался, но в 2000-х годах введены мощности на заводах в Перми (рис. 16), Ярославле и Уфе, на ряде заводов установки гидроочистки реконструированы под процесс лёгкого гидрокрекинга. Идёт монтаж установки в ООО "Киришинефтеоргсинтез", планируется строительство на заводах ОАО "Роснефть".
    Совместное строительство установок гидрокрекинга и каталитического крекинга в рамках комплексов глубокой переработки нефти представляется наиболее эффективным для производства высокооктановых бензинов и высококачественных средних дистиллятов.

    Фотографии установок гидрокрекинга

    Сергей Пронин

    Гидрокрекинг - это каталитический процесс под давлением водорода, предназначенный для получения из нефтяного сырья (имеющего более высокую молекулярную массу, чем получаемые целевые продукты) светлых нефтепродуктов (бензина, керосина, ди­зельного топлива), а также сжиженных газов С 3 - С 4 .

    Используя гидрокрекинг, можно получить широкий ассортимент нефтепродуктов практически из любого нефтяного сырья путем подбора соответствующих катализаторов и условий. Гидрокрекинг является одним из наиболее эффективных и гибких процессов нефтепере­работки.

    Химические основы процесса. Качество получаемых продуктов гидрокрекинга определяются в основном свойства­ми катализатора(гидрирующей и кислотной активностью). Катализаторы гидрокрекинга могут иметь высокую гидрирующую и относительно низкую кислотную ак­тивность, а также относительно невысокую гидрирующую и высокую кислотную активность.

    Превращения алканов. При использовании монофункциональных гидрирующих катализаторах (не обладающих кислотными свойствами), из линейных алканов получаются другие линейные алканы с меньшей молекулярной массой.

    В тоже время при использовании кислотных и бифункциональных катализаторов алканы подвергаются крекингу и изомеризации по гетеролитическому механизму. На катализаторах с высокой кислотной и умеренной гидрирующей активностью гидрокрекинг идет с высокой скоростью, причем образуется много низкомолекулярных изоалканов.

    Превращения циклоалканов. В присутствии гидрирую­щих катализаторов, незамещенные и метилзамещенные моноциклоалканы превращаются главным образом в алканы линейного и изостроения.

    При использовании катализаторов с высокой кислотностью и низкой гидри­рующей активностью превалируют реакции изомери­зации шестичленных циклоалканов в пятичленные. При этом происходит изменение поло­жения заместителей.

    При гидрокрекинге циклоалканы с длинными алкильными боковыми цепями подвергаются в основном изо­меризации и распаду алкильных заместителей. При этом у бициклических циклоалканов раскрывается одно кольцо и они превращаются в моноциклические с высоким вы­ходом производных пентана.

    Превращения алкенов. При гидрокрекинге на кислотных центрах ката­лизатора алкены изомеризуются и подверга­ются распаду по β-правилу. При этом на гид­рирующих центрах происходит насыщение алкенов- как исход­ных, так и образовавшихся при распаде. То есть из линейных алкенов при гидрокрекинге сначала образуются низкомолекулярные алекны линейного и изостроения, а затем они првращаются на гидрирующих центрах в низкомолекулярные алканы линейного и изостроения.

    Превращения аренов. В процессе гидрокрекинга на катализаторах с высокой гидри­рующей и низкой кислотной активностью происходит гидрирование ареновых колец. При этом замещенные арены гидрируются труднее, чем незамещенные. Следует отметить, что наряду с последовательным гидрированием ароматических колец происходит расщепление образовавшихся насыщенных ко­лец и выделение алкилзамещенных аренов.

    При использовании катализаторов с высокой кислотной и низкой гидрирую­щей активностью превращения аренов во многом аналогичны каталитическому крекингу. Незамещенные моно­циклические арены стабильны. При этом метил- и этилбензолы в основном вступают в реакции изомеризации по положению заместителей, а алкилбензолы с более длинными цепями деалкилируются. При отрыве алкильных заместителей образуются алкильные карбкатионы, которые после изомеризации подвергаются β-распаду и насыщаются по схеме, описанной для гидрокрекинга алканов, с образованием смеси низкомолекулярных алканов нормального и изостроения. Важно отметить, что в результате гидрокрекинга полициклических аренов происходит раскрытие ароматических колец и в значительном количестве образуются производные тетралина и индана.

    Катализаторы процесса. Креки­рующую и изомеризующую функции кислотного компонента катализатора выполняют цеолиты, ок­сид алюминия, алюмосиликаты. При этом для усиления кислотности в ка­тализатор вводят галоген, а также оксидные добавки и др.

    Металлы VIII группы (Pt, Pd, Ni, Co, Fe) , а также оксиды или сульфиды некоторых металлов VI группы (Мо, W) являются гидрирующим компонентом катализатора. Для повышения активности перед использованием металлы VIII группы восста­навливают водородом, а оксидные молибден- и вольфрамсодержащие катализаторы сульфидируют; кроме того, для активиро­вания катализаторов используют также разнообразные промо­торы (рений, родий, иридий и др.).

    Важно отметить, что сульфиды и оксиды молибдена и вольфрама с промоторами являются бифункциональными катализаторами.

    Макрокинетика процесса. На первой стадии макрокинетика аналогична процессам, протекающим при гидроочистке. Одновременно происходит гид­рирование алкенов. Затем полициклические арены и циклоалканы гидрируются в заме­щенные моноциклические, а алканы подвергаются изомеризации и расщеплению.

    Важно отметить, что температура проведения гидрокрекинга 300-425°С является оптимальная. Если понизить температуру реакции будут протекать с малой скоростью, а чрезмерное повышение температуры огра­ничивается термодинамическими факторами реакции гидриро­вания и увеличением скорости коксообразования и повышением выхода легких фракций и газа. При давлении менее 5 МПа начинается интенсивное закоксовывание катализатора. Поэтому для тяжелых газойлей и тем более остаточного сырья для предотвращения обрат­ной реакции дегидрирования циклоалкановых колец в полицик­лических системах требуется более высокое давление водорода (до 20- 30 МПа).

    Гидрокрекинг в промышленности. В промышленности широко используются следующие виды гидрогенизационных процессов:

    Гидрокрекинг бензиновых фракций для получения сжиженного нефтяного газа, углеводородов С 4 -С 5 изостроения, в нефтехимическом синтезе и при выработке легкого высокооктанового компонента автомобильных бензинов;

    Гидрокрекинг средних дистиллятов (прямогонных и вторичного происхождения) с температурой кипения 200-350 0 С для получения бензинов и реактивных топлив;

    Гидрокрекинг атмосферного и вакуумного газойлей, газойлей коксования и каталитического крекинга для получения бензинов, реактивного и дизельного топлив;

    Гидрокрекинг высококипящих нефтяных дистиллятов для получения реактивных и дизельных топлив, смазочных масел, малосернистых котельных топлив и сырья каталитического крекинга;

    Селективный гидрокрекинг бензинов с целью повышения октановых чисел;

    Селективный гидрокрекинг реактивных и дизельных топлив с целью сни­жения температуры застывания;

    Селективный гидрокрекинг масляных фракций - для улуч­шения цвета, стабильности и снижения температуры засты­вания;

    Гидродеароматизация и гидродепарафинизация.

    Гидрокрекинг вакуумного дистиллята на установки 68-2к

    Как было сказано выше, гидрокрекинг является эффективным и исключительно гибким ка­талитическим процессом. Этот процесс позволяет оптимально решить проблему глубокой переработки вакуумных дистиллятов, в результате, которого получается различные виды моторных топлив, соответствующих современ­ным требованиям. На рис. 10 приведена принципиальная схема установки одноступенчатого гидрокрекинга 68-2к производительностью 1 млн.т по дизельному топливу и 0.63 млн. т по реактивному топливу.

    Эти установки работают на нескольких НПЗ России применительно к переработке вакуумных газойлей 350-500°С с содержанием металлов не более 2 м.д. и под давлением около 15МПа.

    Для проведения одноступенчатого процесса гидрокрекинга вакуумных дистиллятовиспользуют реактор, имеющий несколько слоев (до пяти) катализаторов нескольких типов. При этом градиент температур в каждом слое не должен превышать 25°С, между отдельными слоями катализатор. Для выполнения этого условия предусмот­рен ввод охлаждающего водородсодержащего газа между слоями катализатора через контактно распределительные устройства, обеспечивающие тепло- и массообмен между газом и реагирующим потоком над слоем катализатора.

    Смесь сырья (с пределами выкипания 350-500°С) с рециркулируемым гидрокрекинг-остатоки водородсодержащим газом, нагреваютсначала в теплообменниках, затем в печи П- 1 до температуры реакции иподаютвреакторы Р-1.

    Реакционную смесь, входящую и реактора, охлаждают в сырьевых теплообменниках, затем в воздушных холодильниках и с температурой 45-55°С направляют в сепаратор высокого давления С-1.

    Рисунок – 10 Принципиальная технологическая схема установки одноступенчатого гидрокрекинга 68-2к.

    I - сырье; II - водородсодержащий газ; III - дизельное топливо; IV - легкий бензин; V - тяжелый бензин; VI - тяжелый газойль; VII - углеводородные газы на ГФУ; VIII - газы отдува; IX - регенерированный раствор моноэтаноламин; X - отработанный моноэтаноламин на регене­рацию; XI - водяной пар

    В сепараторе происходит отделение водородсодержащего газа от нестабильного гидрогенизата. Водородсодержащий газ направляют в абсорбер К-4, где происходит его очистка от сероводорода моноэталамином. Очищенный водородсодержащий газ компрессором подают на циркуляцию. Отработанный моноэтаноламин направляют на регенерацию. Нестабильный гидрогенизат через редукционный клапан направляют в сепаратор низкго давления С-2. В сепараторе выделяют часть углеводородных газов от гидрогенизата. Затем гидрогенезат подают через теплообменники в стабилизационную колонну К-1 для отгонки углеводородных газов и легкого бензина. Затем стабильный гидрогенизат разделяют в атмосферной колонне К-2 на тяжелый бензин и дизель­ную фракцию. Эту фракция отбирают через отпарную колонну К-3 , а кубовую жидкость (фракцию >360 °С) частично используют как рециркулят, а основное количество выводят с установки. Кубовая жидкость может быть использована как сырье для пиролиза, в качестве основы смазочных масел и т. д.

    Таким образом, в результате гидрокрекинга фракции 350-500°С получено, % масс.: 88.03 – дизельное топливо; 1.28 – легкий бензин; 1.19 – углеводородный газ; 3.03 – сероводород; 8.53 – тяжелый бензин. Всего 102.06% (с учетом использованного водорода).

    Процессы переработки нефтяных фракций в присутствии водорода называются гидрогенизационными. Они протекают на поверхности гидрирующих катализаторов в присутствии водорода при высоких значениях температуры (250-420 °С) и давления (от 2,5-3,0 вплоть до 32 МПа). Такие процессы используются для регулирования углеводородного и фракционного состава перерабатываемых нефтяных фракций, очистки их от серо-, азот- и кислородсодержащих соединений, металлов и других нежелательных примесей, улучшения эксплуатационных (потребительских) характеристик нефтяных топлив, масел и сырья нефтехимии. Гидрокрекинг позволяет получать широкий ассортимент нефтепродуктов практически из любого нефтяного сырья путем подбора соответствующих катализаторов и рабочих условий, поэтому он является наиболее универсальным, эффективным и гибким процессом нефтепереработки. Разделение гидрогенизационных процессов на гидрокрекинг и гидроочистку довольно условно по принципу свойств применяемых катализаторов, количества используемого водорода и технологических параметров процесса (давление, температура и др.).

    Например, принята следующая терминология: «гидроочистка» (Hydro-treating), «гидрооблагораживание» (Hydrorefining) и «гидрокрекинг» (Hydrocracking). Гидроочистка включает процессы, в которых не происходит существенного изменения в молекулярной структуре сырья (например, сероочистка при давлении 3-5 МПа). Гидрооблагораживание включает процессы, в которых до 10 % сырья подвергается изменению молекулярной структуры (сероочистка - деароматизация - деазотизация при давлении 6-12 МПа). Гидрокрекинг - это процессы (высокого давления - более 10 МПа и среднего давления - менее 10 МПа), в которых более 50 % сырья подвергается деструкции с уменьшением размера молекул. В 80-х годах XX в. процессы гидрооблагораживания с конверсией менее 50 % получили название мягкого или легкого гидрокрекинга, к которому стали относить промежуточные процессы с гидродеструкцией сырья от 10 до 50 % при давлениях как менее, так и более 10 МПа. Мощности установок (млн т/год) гидрокрекинга в мире равны примерно 230, а гидроочистки и гидрооблагораживания - 1380, из них в Северной Америке - соответственно 90 и 420; в Западной Европе - 50 и 320; в России и СНГ - 3 и 100.

    История развития промышленных гидрогенизационных процессов начиналась с гидрогенизации продуктов ожижения угля. Еще до Второй мировой войны Германия достигла больших успехов в производстве синтетического бензина (синтина) при гидрогенизационной переработке углей (на основе применения синтеза Фишера-Тропша), а в годы Второй мировой войны Германия производила более 600 тыс. т/год синтетических жидких топлив, что покрывало большую часть потребления страны. В настоящее время мировое производство искусственного жидкого топлива на основе угля составляет около 4,5 млн т/год. После широкого промышленного внедрения каталитического риформинга, производящего в качестве побочного продукта избыточный дешевый водород, наступает период массового распространения различных процессов гидроочистки сырьевых нефтяных фракций (кстати, необходимой и для процессов риформинга) и товарной продукции НПЗ (бензиновые, керосиновые, дизельные и масляные фракции).

    Гидрокрекинг (ГК) позволяет получать светлые нефтепродукты (бензиновые, керосиновые, дизельные фракции и сжиженные газы С3-С4) практически из любого нефтяного сырья подбором соответствующих катализаторов и технологического режима процесса. Иногда термин «гидроконверсия» (Hydroconversion) используется как синоним термина гидрокрекинг (Hydrocracking). Первая установка ГК пущена в 1959 г. в США. Большинство процессов ГК предусматривает переработку дистиллятного сырья: тяжелых атмосферных и вакуумных газойлей, газойлей каталитического крекинга и коксования, а также и деасфальтизаторов. Получаемые продукты - это предельные (насыщенные) углеводородные газы, высокооктановая бензиновая фракция, низкозастывающие фракции дизельного и реактивного топлив.

    Гидрокрекинг сырья, содержащего значительные количества соединений на основе серы, азота, кислорода и других элементов, обычно проводят в две ступени (рис. 2.22). На первой ступени осуществляется неглубокий мягкий гидрокрекинг в режиме гидроочистки от нежелательных примесей, обычно являющихся катализаторными ядами или снижающих их активность. Катализаторы этой ступени идентичны катализаторам обычной гидроочистки и содержат оксиды и сульфиды никеля, кобальта, молибдена и вольфрама на разных носителях - активном оксиде алюминия, алюмосиликате или специальных цеолитах. На второй ступени подготовленное, очищенное сырье, содержащее не более 0,01 % серы и не более 0,0001 % азота, подвергается основному жесткому гидрокрекингу на катализаторах на основе палладия или платины на носителе - цеолитах типа Y.

    Гидрокрекинг тяжелых газойлевых фракций применяется для получения бензина, реактивного и дизельного топлива, а также для повышения качества масел, котельного топлива и сырья пиролиза и каталитического крекинга. Гидрокрекинг малосернистых вакуумных дистиллятов в бензин осуществляют в одну ступень на сульфидных катализаторах, стойких к отравлению ге-тероорганическими соединениями, при температуре 340-420 °С и давлении 10-20 МПа с выходом бензина 30-40 % и вплоть до 80-90 об. %. Если сырье содержит более 1,5 % серы и 0,003-0,015 % азота, то применяется двухступенчатый процесс с гидроочисткой сырья на первой ступени. Гидрокрекинг во второй ступени протекает при температуре 290-380 °С и давлении 7-10 МПа. Выход бензина достигает 70-120 об. % на сырье, получаемый легкий бензин до 190 °С используют как высокооктановый компонент товарных бензинов, тяжелый бензин можно направлять на риформинг. Гидрокрекинг тяжелых газойлей в средние фракции (реактивное и дизельное топливо) также проводят в одну или две ступени.

    ходе бензина получить до 85 % реактивного или дизельного топлива. Например, отечественный одноступенчатый процесс гидрокрекинга вакуумного газойля на цеолитсодержащем катализаторе типа ГК-8 может давать до 52 % реактивного топлива или до 70 % зимнего дизельного топлива с содержанием ароматических углеводородов 5-7 %. Гидрокрекинг вакуумных дистиллятов сернистых нефтей проводят в две ступени. Включением гидрокрекинга в технологическую схему НПЗ достигается высокая гибкость в производстве его товарной продукции.

    На одной и той же установке гидрокрекинга возможны разные варианты получения бензина, реактивного или дизельного топлива изменением технологического режима гидрокрекинга и блока ректификационного фракционирования продуктов реакции. Например, бензиновый вариант производит бензиновую фракцию с выходом до 51 % на сырье и фракцию дизельного топлива 180-350 °С с выходом 25 % от сырья. Бензиновую фракцию разделяют на легкий бензин С5-С6 с ОЧм = 82 и тяжелый бензин Су-Сю с ОЧм = 66 при содержании в них серы до 0,01 %. Фракцию Су-С^ можно направить на каталитический риформинг для повышения ее октанового числа. Дизельная фракция имеет цетановое число 50-55, не более 0,01 % серы и температуру застывания не выше минус 10 °С (компонент летнего дизельного топлива).

    В отличие от каталитического крекинга газы С3-С4 и жидкие фракции гидрокрекинга содержат только насыщенные стабильные углеводороды и практически не содержат гетероорганических соединений, они менее ароматизированы, чем газойли каталитического крекинга. При реактивно-то-пливном варианте можно получать до 41 % фракции 120-240 °С, отвечающей стандартным требованиям на реактивное топливо. При дизельно-топливном варианте можно производить 47 или 67 % фракции дизельного топлива с це-тановым числом около 50.

    Перспективным направлением гидрокрекинга является переработка масляных фракций (вакуумных дистиллятов и деасфальтизатов). Глубокое гидрирование масляных фракций повышает их индекс вязкости от 36 до 85-140 при снижении содержания серы с 2 до 0,04-0,10 %, почти на порядок снижается коксуемость и уменьшается температура застывания. Подбирая технологический режим гидрокрекинга, можно получать базовые масляные фракции с высоким индексом вязкости практически из любых нефтей. При гидрокрекинге масляных фракций протекают реакции гидроизомеризации нормальных алканов (застывающих при более высоких температурах), поэтому гидроизомеризация понижает температуру застывания (из-за увеличения в маслах изопарафинов) и исключает необходимость операции депарафинизации масел растворителями. Гидроизомеризация керосиногазойлевых фракций на бифункциональных алюмоплатиновых катализаторах или сульфидах никеля и вольфрама на оксиде алюминия позволяет получить дизельное топливо с температурой застывания до минус 35 °С.

    Гидрокрекинг, сочетающий риформинг и селективный гидрокрекинг, под названием селектоформинг увеличивает октановое число риформатов или рафината (после отделения ароматических углеводородов) на 10-15 пунктов при температуре около 360 °С, давлении 3 МПа и расходе водородсодержащего газа 1000 нм3/м3 сырья на цеолитсодержащем катализаторе с размером входных окон 0,50-0,55 нм с активными металлами платиновой группы, никеля или с оксидами или сульфидами молибдена и вольфрама. Селективным удалением из керосиновых и дизельных фракций нормальных алканов понижается температура застывания реактивных и дизельных топлив до минус 50-60 °С, а температура застывания масел может быть понижена с 6 до минус 40-50 °С.

    Гидродеароматизация - основной процесс получения высококачественных реактивных топлив из прямогонного (с содержанием аренов 14-35 %) и вторичного (с содержанием аренов до 70 %) сырья. Реактивное топливо для сверхзвуковой авиации, например марки Т-6, не должно содержать более 10 мае. % ароматических углеводородов. Поэтому облагораживание фракций реактивного топлива проводят гидроочисткой в режиме гидродеароматизации. Если сырье имеет меньше 0,2 % серы и меньше 0,001 % азота, то гидрокрекинг проводят в одну ступень на платиноцеолитсодержащем катализаторе при температуре 280-340 °С и давлении 4 МПа со степенью удаления (превращения) аренов до 75-90 %.

    При более значительных содержаниях серы и азота в сырье гидрокрекинг осуществляют в две ступени. Вторичное сырье перерабатывают в более жестких условиях при температуре 350-400 °С и давлении 25-35 МПа. Гидрокрекинг является весьма дорогостоящим процессом (большое потребление водорода, дорогое оборудование высокого давления), но он уже давно получил широкое промышленное применение. Основные его достоинства-технологическая гибкость процесса (возможность на одном оборудовании производить разные целевые продукты: бензиновые, керосиновые и дизельные фракции из самого различного сырья: от тяжелых бензиновых до остаточных нефтяных фракций); выход реактивного топлива увеличивается от 2-3 до 15 % на нефть, а выход зимнего дизельного топлива - от 10-15 до 100 %; высокое качество получаемых продуктов в соответствии с современными требованиями.

    Процессы гидроочистки широко применяются в нефтепереработке и нефтехимии. Их используют для получения высокооктановых бензинов, для улучшения качества дизельных, реактивных и котельных топлив и нефтяных масел. Гидроочисткой удаляют из нефтяных фракций сернистые, азотистые, кислородные соединения и металлы, уменьшают содержание ароматических соединений, удаляют непредельные углеводороды путем их превращения в другие вещества и углеводороды. При этом сера, азот и кислород гидрируются практически полностью и превращаются в среде водорода в сероводород H2S, аммиак NH3 и воду Н20, металлоорганические соединения разлагаются на 75-95 % с выделением свободного металла, который иногда является катализаторным ядом. Для гидроочистки используют разнообразные катализаторы, стойкие к отравлению различными ядами. Это оксиды и сульфиды дорогих металлов: никеля Ni, кобальта Со, молибдена Мо и вольфрама W, -на оксиде алюминия А1203 с другими добавками. В большинстве процессов гидроочистки используют алюмокобальтмолибденовые (АКМ) или алюмо-никельмолибденовые (АНМ) катализаторы. Катализаторы АНМ могут иметь добавку цеолита (тип Г-35). Эти катализаторы изготавливаются обычно в виде гранул-таблеток неправильной цилиндрической формы размером 4 мм при насыпной плотности 640-740 кг/м3. При пуске реакторов катализаторы сульфидируют (процесс осернения) газовой смесью сероводорода и водорода. Катализаторы АНМ и алюмокобальтвольфрамовые (АКВ) предназначены для глубокой гидроочистки тяжелого высокоароматизированного сырья, парафинов и масел. Регенерация катализаторов для выжигания кокса с его поверхности проводится при температуре 530 °С. Процессы гидроочистки обычно ограничиваются температурой 320-420 °С и давлением 2,5-4,0 реже 7-8 МПа. Расход водородсодержащего газа (ВСГ) изменяется от 100-600 до 1000 нм3/м3 сырья в зависимости от вида сырья, совершенства катализатора и параметров процесса.

    Гидроочистка бензиновых фракций применяется в основном при их подготовке для каталитического риформинга. Температура гидроочистки 320-360 °С, давление 3-5 МПа, расход ВСГ 200-500 нм3/м3 сырья. При очистке бензиновых фракций каталитического и термического крекинга расход ВСГ больше 400-600 нм3/м3 сырья.

    Гидроочистка керосиновых фракций проводится на более активном катализаторе при давлении до 7 МПа для уменьшения содержания серы менее 0,1 % и ароматических углеводородов до 10-18 мае. %.

    Гидроочистке дизельных фракций подвергают более 80-90 % фракций при температуре 350-400 °С и давлении 3-4 МПа с расходом ВСГ 300-600 нм3/м3 сырья на катализаторах АКМ, степень обессеривания достигает 85-95 % и более. Для повышения цетанового числа дизельных фракций, происходящих из продуктов реакции каталитического и термического крекинга, удаляют часть ароматических углеводородов на активных катализаторах при температуре около 400 °С и давлении до 10 МПа.

    Гидроочистка вакуумных дистиллятов (газойлей) для использования их в качестве сырья каталитического крекинга, гидрокрекинга и коксования (для получения малосернистого кокса) проводится при температуре 360-410 °С и давлении 4-5 МПа. При этом достигается 90-94 % обессеривания, содержание азота снижается на 20-25 %, металлов - на 75-85, аренов - на 10-12, коксуемость - на 65-70 %.

    Гидроочистка масел и парафинов. Гидроочистка базовых масел более совершенна, чем классическая очистка сернокислотная с контактной доочисткой масел. Гидроочистка масел проводится на катализаторах АКМ и АНМ при температуре 300-325 °С и давлении 4 МПа. Г идроочистка масел на алю-можелезомолибденовом катализаторе с промоторами позволяет снизить температуру до 225-250 °С и давление до 2,7-3,0 МПа. Гидроочистка парафинов, церезинов и петролатумов проводится для снижения содержания серы, смолистых соединений, непредельных углеводородов, для улучшения цвета и стабильности (как и для масел). Процесс на катализаторах АКМ и АНМ аналогичен гидроочистке масел. Получили также применение алюмохроммолибде-новые и никельвольфрамжелезные сульфидированные катализаторы.

    Гидроочистка нефтяных остатков. Из нефти получают обычно 45-55 мае. % остатков (мазутов и гудронов), содержащих большие количества серо-, азот- и металлоорганических соединений, смол, асфальтенов и золы. Для вовлечения этих остатков в каталитическую переработку необходима очистка нефтяных остатков. Гидроочистка нефтяных остатков называется иногда гидрообессериванием, хотя происходит удаление не только серы, но и металлов, а также других нежелательных соединений. Гидрообессеривание мазутов проводят при температуре 370-430 °С и давлении 10-15 МПа на катализаторах АКМ. Выход мазута с содержанием серы до 0,3 % составляет 97-98 %. Одновременно удаляются азот, смолы, асфальтены и происходит частичное облагораживание сырья. Гидроочистка гудронов представляет собой более сложную задачу, чем гидроочистка мазутов, поскольку должна достигаться значительная деметаллизация и деасфальтизация гудронов предварительная или непосредственно при процессе гидрообессеривания. Особые требования предъявляются к катализаторам, так как обычные катализаторы быстро теряют активность из-за больших отложений кокса и металлов. Если кокс выжигается при регенерации, то некоторые металлы (никель, ванадий и др.) отравляют катализаторы и их активность при окислительной регенерации обычно не восстанавливается. Поэтому гидродеметаллизация остатков должна предшествовать гидроочистке, что позволяет снизить расход катализаторов гидроочистки в 3-5 раз.

    Реакторы гидрокрекинга и гидроочистки с неподвижным слоем катализатора широко распространены и во многом похожи по конструкции на реакторы каталитического риформинга. Реактор - цилиндрический вертикальный аппарат со сферическими днищами диаметром от 2-3 до 5 м и высотой 10-24 и даже 40 м. При высоких давлениях процесса толщина стенки достигает 120-250 мм. Обычно используется один неподвижный слой катализатора. Но иногда в связи с выделением большого количества тепла при экзотермических реакциях гидрокрекинга возникает необходимость охлаждения внутреннего реакторного пространства вводом хладоагента в каждую зону. Для этого объем реактора секционируют на 2-5 зон (секций), в каждой из которых имеется опорная колосниковая решетка для насыпания катализатора, боковые штуцера для загрузки и выгрузки катализатора, распределительные устройства для парогазовой смеси, а также штуцера и распределители для ввода хладоагента - холодного циркулирующего газа для снятия тепла реакции и регулирования необходимой температуры по высоте реактора. Слой катализатора односекционного реактора имеет высоту до 3-5 м и более, а в многосекционных реакторах - до 5-7 м и более. Сырье входит в аппарат через верхний штуцер, а продукты реакции покидают реактор через нижний штуцер, проходя через специальные пакеты сеток и фарфоровых шаров для задержки катализатора. В верху реактора устанавливаются фильтрующие устройства (система перфорированных стаканов-патрубков и металлических сеток) для улавливания продуктов коррозии из парогазового сырья. Для аппаратов высокого давления (10-32 МПа) предъявляются особые требования к конструкции корпуса и внутренних устройств.

    Регенерация катализаторов проводится окислительным выжиганием кокса . Регенерация во многом похожа на регенерацию катализаторов каталитического риформинга, но имеются и свои особенности. После отключения реактора от сырья снижают давление и переходят на циркуляцию с помощью ВСГ. При тяжелых видах сырья промывают катализатор растворителями, бензином или дизельным топливом при температуре 200-300 °С. Потом ВСГ заменяют на инертный газ (водяной пар). В случае газовоздушной регенерации процесс похож на регенерацию катализаторов риформинга. При паровоздушной регенерации сначала продувают систему инертным газом до остаточного содержания водорода не выше 0,2 об. %, затем инертный газ заменяют на водяной пар с отводом его в дымовую трубу трубчатой печи при условиях, исключающих конденсацию водяного пара (температура на выходе из печи 300-350 °С, давление в реакторе около 0,3 МПа). Далее катализатор нагревают до температуры 370-420 °С выжигом кокса при концентрации кислорода в смеси не более 0,1 об. % Увеличением расхода воздуха при концентрации кислорода до 1,0-1,5 об. % поднимается температура катализатора до 500-520 °С (но не выше 550 °С). Контролем снижения концентрации С02 в дымовых газах принимается решение о прекращении регенерации, которую заканчивают, когда содержание кислорода в дымовых газах становится близким к содержанию кислорода в смеси на входе в реактор. Паровоздушная регенерация более проста и протекает при низких давлениях не выше 0,3 МПа с использованием водяного пара из заводской сети. Водяной пар смешивают с воздухом и через трубчатую печь подают в реактор, дымовые газы сбрасывают в дымовую трубу трубчатой печи.

    Промышленные установки гидроочистки и гидрокрекинга. Типовые установки периода 1956-1965 гг. для гидроочистки дизельных топлив были двухступенчатыми мощностью 0,9 млн т сырья/год типа Л-24-6, гидроочистка бензиновых фракций осуществлялась в отдельно стоящих блоках мощностью 0,3 млн т сырья/год. В 1965-1970 гг. внедрены установки гидроочистки различных дистиллятных фракций мощностью 1,2 млн т/год типа Л-24-7, ЛГ-24-7, ЛЧ-24-7. Бензиновые фракции очищались в блоках комбинированных установок риформинга мощностью 0,3 и 0,6 млн т/год. Керосиновые фракции очищались на установках гидроочистки дизельных топлив, предварительно дооборудованных для этих целей. С 1970 г. широко внедрялись укрупненные установки различного типа и назначения - как отдельно стоящие типа J1-24-9 и J14-24-2000, так и в составе комбинированных установок JlK-бу (секция 300) мощностью от 1 до 2 млн т/год. Технологические схемы гидроочистки реактивного и дизельного топлив во многом похожи на схему блока гидроочистки бензиновых фракций - сырья установок каталитического риформинга.

    Эксплуатируются установки гидрообессеривания котельных топлив, мазутов и гудронов типа 68-6 в реакторах с трехфазным кипящим слоем. Мощность установки в зависимости от сырья может изменяться от 1,25 млн т/год сернистого гудрона до 2,5 млн т/год сернистого мазута. Давление процесса равно 15 МПа, температура - 360-390 °С, расход ВСГ - 1000 нм3/м3 сырья. Катализатор АКМ применяется в виде экструзированных частиц диаметром 0,8 мм и высотой 3-4 мм. Катализатор в реакторе не регенерируется, а выводится в небольшом количестве и заменяется свежей порцией один раз в 2 сут. Корпус реактора - многослойный с толщиной стенки 250 мм, масса реактора около 800 т.

    Приведем названия процессов гидрокрекинга и гидроочистки зарубежных фирм:

    Современные гидрогенизационные процессы фирмы «Union Oil»: процесс «Юникрекинг/ДП», включающий последовательно работающие два реактора гидроочистки и селективной гидродепарафинизации для обработки сырья - дизельных фракций и вакуумных газойлей с получением низкоза-стывающей дизельного топлива (температура застывания иногда до минус 80 °С) с содержанием 0,002 % серы, менее 10 % ароматики на катализаторах НС-К и НС-80 при конверсии сырья 20 %; процесс «Юникрекинг» с частичной конверсией 80 % сырья - вакуумных газойлей с получением дизельного топлива с содержанием 0,02 % серы, менее 10 % ароматики на катализаторе предварительной гидроочистки НС-К и усовершенствованном цеолитном катализаторе DHC-32, процесс может также использоваться в работе НПЗ по бензиновому варианту в схеме подготовки сырья для каталитического крекинга; процесс «Юникрекинг» с полной 100 %-ной конверсией сырья - вакуумных газойлей с температурой конца кипения 550 °С с получением экологически чистых реактивных и дизельных топлив с содержанием 0,02 % серы, 4 и 9 % ароматики на аморфном сферическом катализаторе DHC-8 (цикл работы катализатора 2-3 года), обеспечивающем максимальный выход высококачественных дистиллятов, особенно дизельных топлив; процесс «Юнисар» с конверсией 10 % на новом катализаторе AS-250 для эффективного снижения содержания ароматики до 15 % в реактивных и дизельных топливах (гидродеароматизация), особо рекомендуется для производства дизельных топлив из труднооблагораживаемых видов сырья, например легких газойлей каталитического крекинга и коксования; процесс «АН-Unibon» фирмы «UOP» для гидроочистки-гидрооблагораживания дизельных топлив типа AR-10 и AR-10/2 (две ступени) до содержания серы 0,01 мае. % и ароматики до 10 об. % с цетановым числом 53 при давлении процесса 12,7 и 8,5 МПа (две ступени).

    Для реформулирования (контролируемой гидрообработки) нефтяных остатков в мировой практике применяются, в частности, следующие процессы: гидроочистка - процесс «RCD Unionfining» фирмы «Union Oil» для уменьшения содержания серы, азота, асфальтенов, металлов и снижения коксуемости остаточного сырья (вакуумных остатков и асфальтов процессов деасфальтизацией) с целью получения качественного малосернистого котельного топлива или для дальнейшей переработки при гидрокрекинге, коксовании, каталитическом крекинге остаточного сырья; гидроочистка - процесс «RDS/VRDS» фирмы «Chevron» по назначению похож на предыдущий процесс, при этом перерабатывается сырье вязкостью при 100 °С до 6000 мм2/с с содержанием металлов до 0,5 г/кг (для глубокой гидродеметаллизации сырья), применяется технология замены катализатора на ходу, которая дает возможность выгружать катализатор из реактора и заменять его свежим при сохранении нормального режима работы в параллельных реакторах, что позволяет перерабатывать очень тяжелое сырье с пробегом установки более года; гидровисбрекинг - процесс «Aqvaconversion» фирм «Intevep SA», «UOP», «Foster Wheeler» обеспечивает значительное снижение вязкости (больше в сравнении с висбрекингом) тяжелых котельных топлив при более высокой конверсии сырья, а также позволяет получать водород из воды в условиях основного процесса за счет ввода в сырье вместе с водой (паром) композиции из двух катализаторов на основе неблагородных металлов; гидрокрекинг -процесс «LC-Fining» фирм «ABB Lummus», «Оху Research», «British Petroleum» для обессеривания, деметаллизации, уменьшения коксуемости и конверсии атмосферных и вакуумных остатков с конверсией сырья 40-77 %, степенью обессеривания 60-90 %, полнотой деметаллизации 50-98 % и снижением коксуемости на 35-80 %, при этом в реакторе катализатор поддерживается во взвешенном состоянии восходящим потоком сырьевой жидкости (например, гудрона), смешанной с водородом; гидрокрекинг -процесс «Н-Oil» (рис. 2.23) для гидрообработки остаточного и тяжелого сырья, например гудрона, в двух или трех реакторах со взвешенным слоем катализатора, по ходу процесса можно добавлять и выводить катализатор из реактора, сохраняя его активность, степень конверсии гудрона от 30 до 80 %; гидрооблагораживание остаточного сырья - процесс «Нусоп» фирмы «Shell» использует все бункерные реакторы (один или несколько в зависимости от содержания металлов в сырье) с движущимся слоем катализатора для постоянного обновления катализатора в реакторах (0,5-2,0 % от общего количества катализатора в 1 сут.), при этом могут применяться также два реактора с неподвижным слоем катализатора после бункерных реакторов, при необходимости в схему включается реактор гидрокрекинга для увеличения конверсии сырья для давлений процесса 10-20 МПа и температур 370-420 °С (рис. 2.24).

    Важнейшим достижением последних лет в технологии производства бес-сернистых низкозастывающих реактивных и дизельных топлив и базовых высокоиндексных масел является создание гидрогенизационных процессов под названием «Изокрекинг» фирм «Chevron» совместно с фирмой «АВВ

    Lummus», которые проводят гидрокрекинг с конверсией 40-60 % (масляный), 50-60, 70-80 или 100 % (дизельный) вакуумных газойлей 360-550 °С или тяжелых вакуумных газойлей 420-570 °С, снижают содержание серы до 0,01-0,001 % (дизельное топливо) или до 0,005 % (масла), доводят содержание ароматики до 1-10 % в зависимости от марки катализатора (аморфно-цеолитного или цеолитно-го) ICR-117, 120, 139, 209 и др., количества реакционных ступеней (одной или двух), давления в реакторах (менее 10 или более 10 МПа), использования рецикловых систем, а также проводит селективную гидроизомеризацию н-парафинов. Этот процесс в режиме с гидроизодепарафиниза-цией позволяет перерабатывать тяжелые вакуумные газойли с максимальными выходами высоиндексных смазочных масел (ИВ=110-130) при одновременном получении низкозастывающих дизельных топлив. В отличие от гидродепарафини-зации, при которой н-парафины удаляются, в этом процессе они гидроизомеризу-ются. Отличительной модификацией последних лет гидрокрекинга (с высоким уровнем конверсии) является применение дополнительных технологических решений для удаления тяжелой многоядерной ароматики (ТМА) из рецикловой жидкости (горячая сепарация, селективная адсорбция ТМА и др.) в системах гидрокрекинга с рециклом. Образующаяся в процессе работы ТМА (ароматика с 11 и более кольцами) нежелательна в товарных продуктах, она снижает эффективность катализатора, выпадает в осадок на более холодных поверхностях аппаратуры и трубопроводов, нарушает функционирование установки.

    Гидрокрекинг предназначен для получения малосернистых топливных дистил-лятов из различного сырья.

    Гидрокрекинг - процесс более позднего поколения, чем каталитический крекинг и каталитический риформинг, поэтому он более эффективно осуществляет те же задачи, что и эти 2 процесса.

    В качестве сырья на установках гидрокрекинга используют вакуумные и атмосферные газойли, га-зойли термического и каталитического крекинга, деасфальтизаты, мазуты, гудроны.

    Технологическая установка гидрокрекинга состоит обычно из 2 х блоков:

    Реакционного блока, включающего 1 или 2 реактора,

    Блока фракционирования, состоящего из различного числа дистилляционных колонн.

    Продуктами гидрокрекинга являются автомобильные бензины, реактивное и дизельное топливо, сырье для нефтехимического синтеза и СУГ (из бензиновых фракций).

    Гидрокрекинг позволяет увеличить выход компонентов бензина, обычно за счет превращения сырья типа газойля.

    Качество компонентов бензина, которое при этом достигается, недостижимо при повторном прохождении газойля через процесс крекинга, в котором он был получен.

    Гидрокрекинг также позволяет превращать тяжелый газойль в легкие дистилляты (реактивное и дизельное топливо). При гидрокрекинге не образуется никакого тяжелого неперегоняющегося остатка (кокса, пека или кубового остатка), а только легко кипящие фракции.

    Преимущества гидрокрекинга

    Наличие установки гидрокрекинга позволяет переключать мощности НПЗ с выпуска больших количеств бензина (когда установка гидрокрекинга работает) на выпуск больших количеств дизельного топлива (когда она отключена).

    Гидрокрекинг повышает качество компонентов бензина и дистиллята.

    В процессе гидрокрекинга используются худшие из компонентов дистиллята и выдает компонент бензина выше среднего качества.

    В процессе гидрокрекинга образуются значительные количества изобутана, что оказывается полезным для управления количеством сырья в процессе алкилирования.

    Использование установок гидрокрекинга дает увеличение объема продуктов на 25%.

    В настоящее время широко используется около 10 различных типов установок гидрокрекинга, но все они очень похожи на типичную конструкцию.

    Катализаторы гидрокрекинга менее дороги, чем катализаторы каталитического крекинга.

    Технологический процесс

    Слово гидрокрекинг расшифровывается очень просто. Это каталитический крекинг в присутствии водорода.

    Ввод холодного водородсодержащего газа в зоны между слоями катали-затора позволяет выравнивать температуры сырьевой смеси по высоте реактора.

    Движение сырьевой смеси в реакторах нис-ходящее.

    Сочетание водорода, катализатора и соответствующего режима процесса позволяют провести крекинг низкокачественного легкого газойля, который образуется на других крекинг-установках и иногда используется как компонент дизельного топлива.
    Установка гидрокрекинга производит высококачественный бензин.

    Катализаторы гидрокрекинга - обычно это соединения серы с кобальтом, молибденом или никелем (CoS, MoS 2 , NiS) и оксид алюминия.
    В отличие от каталитического крекинга, но так же как при каталитическом риформинге, катализатор располагается в виде неподвижного слоя. Как и каталитический риформинг, гидрокрекинг чаще всего проводят в 2-х реакторах.

    Сырье, пода-ваемое насосом, смешивается со свежим водородсодержащим газом и циркуляционным газом, ко-торые нагнетаются компрессором.

    Газосырьевая смесь, пройдя теплообменник и змеевики печи, нагревается до температуры реакции 290- 400°С (550-750°F) и под давлением 1200- 2000 psi (84-140 атм) вводится в реактор сверху. Учитывая большое тепловыде-ление в процессе гидрокрекинга, в реактор в зоны между слоями катализатора вводят холодный водородсодержащий (циркуляционный) газ с целью выравнивания температур по высоте реактора. Во время прохождения сквозь слой катализатора примерно 40-50% сырья подвергается крекингу с образованием продуктов, соответствующих по температурам кипения бензину (точка выкипания до 200°С (400°F).

    Катализатор и водород дополняют друг друга в не-скольких аспектах. Во-первых, на катализаторе идет кре-кинг. Чтобы крекинг продолжался, требуется подвод теп-ла, то есть это - эндотермический процесс. В то же время, водород реагирует с молекулами, которые образуются при крекинге, насыщая их, и при этом выделяется теп-ло. Другими словами, эта реакция, которая называется гидрирование, является экзотермической. Таким образом, водород дает тепло, необходимое для протекания кре-кинга.

    Во-вторых - это образование изопарафинов. При крекинге получаются олефины, которые могут соединяться друг с другом, при-водя к нормальным парафинам. За счет гидрирования двой-ные связи быстро насыщаются, при этом часто возникают изопарафины, и таким образом предотвращается повтор-ное получение нежелательных молекул (октановые числа изопарафинов выше, чем в случае нормальных парафинов).

    Выходящая из реактора смесь продуктов реакции и циркуляционного газа охлаждается в теплооб-меннике, холодильнике и поступает в сепара-тор высокого давления. Здесь водородсодержащий газ для обратного направления в процесс и смешивания с сырьем отделяется от жидкости, которая с низа сепара-тора через редукционный клапан, поступает далее в сепаратор низкого давления. В сепараторе выделяется часть углеводородных газов, а жидкий поток направляется в теплообменник, располо-женный перед промежуточной ректификационной колонной, для дальнейшей перегонки. В колонне при небольшом избыточном давлении выделяются углеводородные газы и лег-кий бензин. Керосиновую фракцию можно выделить, как бо-ковой погон или оставить вместе с газойлем в качестве остатка от перегонки.

    Бензин частично возвращается в промежуточную ректификационную колонну в виде острого орошения, а балансовое его количество через систему «защелачивания» откачивается с уста-новки. Остаток из промежуточной ректификационной колонны разделяется в атмосфер-ной колонне на тяжелый бензин, дизельное топ-ливо и фракцию >360°С. Так как сырье на данной операции уже подвергалось гидрированию, крекингу и риформингу в 1-м реакторе, процесс во 2-м реакто-ре идет в более жестком режиме (более высокие температуры и давления). Как и продукты 1-й стадии, смесь, выходящая из 2-го реактора, отделяется от водорода и направляется на фракционирование.

    Толщина стенок стального реактора для процесса, проходящего при 2000 psi (140 атм) и 400°С, иногда до-стигает 1 см.

    Основная задача - не дать крекингу выйти из-под контроля. Поскольку суммарный процесс эндотермичен, то возможен быстрый подъем температу-ры и опасное увеличение скорости крекинга. Чтобы избе-жать этого, большинство установок гидрокрекинга содержат встроенные приспособления, позволяющие быст-ро остановить реакцию.

    Бензин атмосферной колонны смешивается с бен-зином промежуточной колонны и выводится с уста-новки. Дизельное топливо после отпарной колонны охлаждается, «защелачивается» и откачивается с уста-новки. Фракция >360°С используется в виде горя-чего потока внизу атмосферной колонны, а остальная часть (остаток) выводится с установки. В случае произ-водства масляных фракций блок фракционирования имеет также вакуумную колонну.

    Регенерация катализатора проводится смесью воздуха и инертного газа; срок службы катализа-тора 4-7 мес.

    Продукты и выходы.

    Сочетание крекинга и гидрирования дает продукты, относительная плотность которых значительно ниже, чем плотность сырья.

    Ниже приведено типичное распределение выходов продуктов гидро¬крекинга при использовании в качестве сырья газойля с установки коксования и светлых фракций с установки каталитического крекинга.

    Продукты гидрокрекинга - это 2 основные фракции, которые используются как компоненты бензина.

    Объемные доли

    Газойль коксования 0,60

    Светлые фракции с установки каталитического крекинга 0,40

    Продукты:

    Изобутан 0,02

    Н-Бутан 0,08

    Легкий продукт гидрокрекинга 0,21

    Тяжелый продукт гидрокрекинга 0,73

    Керосиновые фракции 0.17

    Напомним, что из 1 ед сырья получается около 1,25 ед продукции.

    Здесь не указано требуемое количество водорода, которое измеряется в стандартных фт 3 /барр сырья.

    Обычный расход составляет 2500 ст.

    Тяжелый продукт гидрокрекинга - это лигроин (нафта), содержащий много предшественников ароматики (то есть соединений, которые легко превращаются в ароматику).

    Этот продукт часто направляют на установку риформинга для облагораживания.

    Керосиновые фракции являются хорошим реактивным топливом или сырьем для дистиллятного (дизельного) топлива, поскольку они содержат мало ароматики (в результате насыщения двойных связей водородом).

    Гидрокрекинг остатка.

    Существует несколько моделей установок гидрокрекинга, которые были сконструированы специально для переработки остатка или остатка от вакуумной перегонки.

    На выходе получается более 90% остаточного (котельного) топлива.

    Задачей данного процесса является удаление серы в результате каталитической реакции серосодержащих соединений с водородом с образованием сероводорода.

    Таким образом, остаток с содержанием серы не более 4% может быть превращен в тяжелое жидкое топливо, содержащее менее 0,3% серы.
    Использовать установки гидрокрекинга необходимо в общей схеме переработки нефти.

    С одной стороны, установка гидрокрекинга является центральным пунктом, так как она помогает установить баланс между количеством бензина, дизельного топлива и реактивного топлива.
    С другой стороны, скорости подачи сырья и режимы работы установок каталитического крекинга и коксования не менее важны.
    Кроме того, алкилирование и риформинг также следует учитывать при планировании распределения продуктов гидрокрекинга.