• Был ли на самом деле Большой взрыв? Новые опровержения. Десять альтернатив традиционной теории большого взрыва Эмпирическое подтверждение модели большого взрыва

    Почему ученые считают, что Вселенная началась со взрыва?

    Астрономы приводят три очень разные последовательности рассуждений, которые создают прочную основу для данной теории. Давайте рассмотрим их подробнее.

    Открытие явления расширения Вселенной . Вероятно, самое убедительное доказательство теории Большого Взрыва вытекает из замечательного открытия, сделанного американским астрономом Эдвином Хабблом в 1929 году. До этого большинство ученых считали Вселенную статичной - неподвижной и не меняющейся. Но Хаббл обнаружил, что она расширяется: группы галактик разлетаются одна от другой, так же как осколки разбрасываются в разных направлениях после космического взрыва (см. раздел "Постоянная Хаббла и возраст Вселенной" в этой главе).

    Очевидно, что если какие-то объекты разлетаются, то когда-то они были ближе один к другому. Прослеживая процесс расширения Вселенной назад во времени, астрономы пришли к выводу, что около 12 миллиардов лет назад (плюс-минус несколько миллиардов лет) Вселенная представляла собой невероятно горячее и плотное образование, высвобождение огромной энергии из которого было вызвано взрывом колоссальной силы.

    Открытие космического микроволнового фона . В 1940-х годах физик Георгий Гамов понял, что Большой Взрыв должен был породить мощное излучение. Его сотрудники предположили также, что остатки этого излучения, охлажденные в результате расширения Вселенной, могут все еще существовать.

    В 1964 году Арно Пенциас и Роберт Вилсон из AT & Т Bell Laboratories , сканируя небо с помощью радиоантенны, обнаружили слабое равномерное потрескивание. То, что они сначала приняли за радиопомехи, оказалось слабым "шелестом" излучения, оставшегося после Большого Взрыва. Это однородное микроволновое излучение, пронизывающее все космическое пространство (его еще называют реликтовым излучением). Температура этого космического микроволнового фона (cosmic microwave background) в точности такая, какой она должна быть по расчетам астрономов (2,73° по шкале Кельвина), если охлаждение происходило равномерно с момента Большого Взрыва. За свое открытие А. Пенциас и Р. Вилсон в 1978 году получили Нобелевскую премию по физике.

    Изобилие гелия в космосе . Астрономы обнаружили, что по отношению к водороду количество гелия в космосе составляет 24 %. Причем ядерные реакции внутри звезд (см. главу 11) идут недостаточно долго для того, чтобы создать так много гелия. Но гелия как раз столько, сколько теоретически должно было образоваться во время Большого Взрыва.



    Как оказалось, теория Большого Взрыва успешно объясняет явления, наблюдаемые в космосе, но остается только отправной точкой для изучения начального этапа развития Вселенной. Например, эта теория, несмотря на ее название, не выдвигает никаких гипотез об источнике "космического динамита", который и вызвал Большой Взрыв.

    Раздувание Вселенной

    Помимо отсутствия указания источника взрыва, у теории Большого Взрыва есть и другие слабые места. Например, она не объясняет, почему районы Вселенной, которые разделяет такое огромное расстояние, что между ними нельзя установить связь, - даже с помощью посланника, путешествующего со скоростью света, - тем не менее, выглядят настолько похожими один на другой.

    В 1980-х годах физик Алан Гут выдвинул теорию раздувания (или инфляции ) Вселенной, которая способна объяснить эти загадки. А. Гут предположил, что за крошечную долю секунды после рождения Вселенная испытала скачок колоссального роста. Всего за 10 -32 секунды Вселенная расширилась со скоростью гораздо большей, чем когда-либо в последующие примерно 14 миллиардов лет, который прошли с тех пор.

    В этот период мощного расширения мельчайшие фрагменты, которые раньше находились в тесном контакте, были разбросаны в далекие уголки Вселенной. А в большом масштабе Космос выглядит везде одинаково, в каком направлении наблюдатель ни направил бы свой телескоп. На самом деле в результате раздувания мелкие участки Космоса превращаются в объемы намного большие, чем земные астрономы когда-либо могли наблюдать. Из этого расширения следует возможность создания вселенных, находящихся далеко за пределами нашей собственной Вселенной. Возможно, существует не одна, а множество вселенных, или мультивселенная (multiverse).

    У раздувания есть еще одно свойство. В процессе этого скачкообразного роста происходят захват случайных субатомных колебаний энергии и увеличение их до макроуровня. Благодаря сохранению и усилению этих квантовых колебаний в процессе раздувания создаются участки, немного различающиеся по плотности.



    В одних районах, в среднем, содержится больше материи и энергии, чем в других. Это соответствует холодным и горячим температурным уровням космического микроволнового фона (см. предыдущий раздел и рис. 16.1). Со временем гравитация на основе этих различий создала тонкую паутину из скоплений галактик и огромных пустот, из которых состоит Вселенная сегодня.

    Рис. 16.1. Светлые и темные пятна на этой карте неба, полученной с помощью спутника СОВЕ (Cosmic Background Explorer - Исследователь космического фона), указывают на горячие и холодные участки космического микроволнового фона

    Фотография любезно предоставлена NASA

    После Второй мировой войны во многих областях технологии произошли революционные сдвиги. То была эпоха полупроводников, лазера и электронно-вычислительных машин. Научная аппаратура также подверглась радикальному усовершенствованию. Многие эксперименты, проведение которых было неосуществимо с помощью техники сороковых годов, стали рутиной в шестидесятых. Детекторы радиации, что особенно для нас важно, тоже были усовершенствованы во стократ. К шестидесятым годам обнаружение сверхслабой магнитной радиации, предсказанной теорией "большого взрыва", стало технически осуществимым.

    В 1965 году два американских ученых, сотрудники научно-исследовательской лаборатории телефонной компании "Белл", Арно Пензиас и Роберт Уилсон, занимались измерениями галактических радиоволн с помощью особо чувствительных антенн. Во время испытания антенны они заметили очень слабое, незнакомое электромагнитное излучение, которое шло, казалось, со всех сторон из космического пространства. Вскоре стало ясно, что это и есть та самая радиация, которую предсказала теория "большого взрыва" .

    После опубликования открытия Пензиаса и Уилсона их результаты были подтверждены многими другими исследователями. В настоящее время не остается и тени сомнения, что это фундаментальное предположение теории "большого взрыва" является научно обоснованным фактом. Более того, подтвердились также и другие ключевые предположения этой теории. Так, например, теория предполагает, что все галактики Вселенной разбегаются с огромной скоростью в результате первоначального взрыва, причем отдаленные галактики движутся с большей скоростью, чем ближние. Это угаданное Гамовым "разбегание" галактик было подтверждено, главным образом, исследованиями американского астронома Эдвина Хаббла; скорость галактического движения получила название константы Хаббла. Еще одна победа теории "большого взрыва" связана с химическим составом Вселенной. Соотношение количества водорода и гелия, наблюдаемое во Вселенной, полностью соответствует постулатам теории.

    Теория "большого взрыва" получила дополнительное подтверждение в конце 90-х годов, когда космический спутник СОВЕ передал результаты произведенных им измерений. Американское Агентство по Освоению Космического Пространства (NASA) запустило этот спутник за пределы атмосферы с целью измерения различных свойств излучения, вызванного "большим взрывом". Полученная информация полностью подтвердила теорию "большого взрыва". Английский журнал Nature назвал эти исследования "триумфом науки", а журнал Scientific American за июль 1992 года открывался статьей "Дальнейшие доказательства теории "большого взрыва" .

    Открытия, сделанные в 1992 году с помощью СОВЕ, неоднократно освещались также и в широкой прессе. Поскольку все предположения теории "большого взрыва" получили подтверждение, она превратилась в общепринятую космологическую теорию, все же прочие теории этого рода были преданы забвению. В настоящее время все космологические исследования проводятся исключительно в рамках теории "большого взрыва" Окончательное признание обоснованности этой теории пришло в 1978 году, когда Арно Пензиасу и Роберту Уилсону за их фундаментальное открытие была присуждена Нобелевская премия по физике. К сожалению, Джордж Гамов умер в 1968 году и не мог разделить с ними славу, ибо правила Нобелевского комитета не допускают присуждения премии посмертно

    Значение открытия Пензиаса и Уилсона трудно переоценить. Профессор Стивен Вайнберг назвал его "одним из важнейших научных открытий двадцатого века". Энтузиазм Вайнберга вполне понятен Теория "большого взрыва" радикально изменила наши представления о происхождении Вселенной.

    Начиная с 1980 года, теория "большого взрыва" обогатилась существенными новыми открытиями, которые Гут и Стайнхардт определили общим термином "расширяющаяся Вселенная". В недавно опубликованной статье, где подводятся итоги этих новых открытий, имеется следующая фраза: "первоначально Вселенная находилась в беспорядочном, хаотическом состоянии". Одна из новых книг по космологии подробно рассматривает феномен изначального хаоса и проистекающие из него важнейшие космологические последствия. Раздел книги, где рассматривается этот вопрос, озаглавлен "Первичный хаос" и помещен в главе, называющейся "От хаоса к космосу". И, наконец, Андрей Линде, профессор Московского физического института имени Лебедева, предложил так называемый "сценарий хаотического расширения", описывающий истоки Вселенной. Объяснение природы этого хаоса и его значения выходит за пределы данной монографии, однако необходимо подчеркнуть, что роль хаоса в развитии первоначальной Вселенной превратилась в важнейший предмет космологических исследований .

    Существует широко распространенное убеждение, что, поскольку в настоящее время космологические изменения происходят чрезвычайно медленно, то они и всегда происходили в таком же темпе. В этом, по сути дела, и заключалась философия прежних, ныне опровергнутых космологических теорий. Современная же теория, теория "большого взрыва", гласит, напротив, что длинная цепь драматических космологических изменений в начале Вселенной совершилась в чрезвычайно короткое время. Эту ситуацию ярко подчеркнул профессор Гарвардского университета Стивен Вайнберг, назвав свою популярную книгу по современной космологии "Первые три минуты ". Профессору Вайнбергу понадобилась 151 страница текста и множество диаграмм, чтобы описать те важнейшие космологические изменения в нашей Вселенной, которые заняли всего три минуты.

    Основные выводы, следующие из данной главы, лучше всего передает формулировка профессоров Гута и Стайнхардта, которые считают, что "с исторической точки зрения, вероятно, самый революционный аспект" современной космологической теории заключается в утверждении, что материя и энергия были сотворены в буквальном смысле этого слова. Они подчеркивают, что "этот постулат радикально противоречит многовековой научной традиции, утверждавшей, что нельзя сделать нечто из ничего".

    Знаете ли вы, как появилась наша Вселенная? Сегодня основной теорией возникновения Веселенной считается Теория большого взрыва, возникшая в научной среде в начале 20 века.



    Однако мало кто знает, что у данной теории имеется множество противников в научном сообществе и что, по сути, она до сих пор не доказана, а значит, является не более чем общепринятым предположением. Казалось, ситуация могла кардинально измениться в марте 2014 года, когда американские ученые под руководством Джона Ковача из Гарвард-Смитсоновского центра астрофизики заявили о сенсационном открытии. Исследуя космический микроволновый фон с помощью аппарата BICEP2, установленного на Южном полюсе, ученые обнаружили следы первичных гравитационных волн – по крайней мере, так им показалось вначале.


    Считается, что первичные гравитационные волны возникли в момент инфляции (первичного расширения Вселенной) 13,8 миллиадов лет назад, позволяя Вселенной расширяться. Благодаря этим огромным гравитационным волнам, как предполагают ученые, малейшие колебания на уровне атомов создавали гигантские возмущения, из-за которых происходил процесс создания галактик.



    Если бы существование этих волн было доказано, то и сама теория Большого взрыва получила бы веское доказательство, однако этого не произошло. Открытие американцев было очень быстро опровергнуто, а Нобелевская премия, которую прочили российскому ученому, описавшему эти волны, похоже, так и не будет вручена.


    Ученые под руководством Джона Ковача опубликовали результаты своих исследований в научном журнале Physical Research Letters. Полученные ими данные были названы сенсационными и произвели настоящий переполох в научной среде. Однако вскоре стало понятно, что громкое заявление оказалось преждевременным. Выводы ученых были основаны на результатах, полученных с помощью телескопа BICEP2, который измерял поляризацию реликтового излучения (которое также возникло в момент Большого взрыва). Вскоре критики данного открытия стали предполагать, что обнаруженная поляризация была вызвана некоторыми другими причинами и вовсе не является следом первичным гравитационных волн.




    Причиной для такого предположения стали данные другого телескопа – «Планк», который был запущен в 2009 году Европейским космическим агентством. «Планк» работает ниже температуры реликтового излучения, что позволяет с большой точностью измерять его температуру в разных точках. Результаты, полученные телескопом «Планк», были весьма ожидаемыми в научном мире, так как с их помощью можно было бы подтвердить или опровергнуть существование реликтовых гравитационных волн.


    Наконец, в июне этого года анализ данных телескопа «Планк» завершился, и ученых ожидало большое разочарование: никаких «следов» реликтовых гравитационных волн обнаружить не удалось, и эти данные, по мнению ученых, заслуживают гораздо большего доверия, нежели данные аппарата BICEP2. Критики неудавшегося открытия предполагают, что поляризация, обнаруженная командой Джона Ковача, могла быть вызвана обычной космической пылью. Сами же авторы сенсационного открытия после полученной критики уже не так уверенно заявляют о своем открытии, отмечая, что полученные ими данные требуют дополнительных подтверждений.



    В свете этой поистине детективной истории будет весьма интересно вспомнить об Альберте Эйнштейне, который является основателем современной научной парадигмы и по совместительству первым человеком, который предположил, что Вселенная образовалась в результате взрыва. Из недавно обнаруженных рукописей Эйнштейна стало известно, что ученый сомневался в своей концепции о возникновении Вселенной и параллельно работал над альтернативной теорией . Эта теория, в частности, предполагает, что во Вселенной постоянно происходит образование новой материи, параллельно с процессом ее расширения. Из этой «новой» материи и происходит образование новых галактик, и тем самым Вселенная сохраняет свою плотность. Продолжателями этой теории стали ученые Фред Хойл, Томас Голд и Германн Бонди, однако в 60-е годы их работа была забыта из-за открытия реликтового излучения, которое на данный момент является одним из главных доказательств теории Большого взрыва.















    Весьма интересно, что даже с точки зрения самого обычного человека общепринятая сегодня теория Большого взрыва является нелогичной. Ведь, если бы Вселенная расширялась в течение 13,8 млрд лет, то вся материя, которая образовалась в момент взрыва, уже давно бы разлетелась на необозримые расстояния.


    Вообще, теория Большого взрыва создает больше вопросов, чем ответов. Сам Эйнштейн называл теорию Большого взрыва отвратительной. Если вся материя появилась в первый момент существования Вселенной, то откуда и как она появилась? На этот вопрос также нет ответа, а значит, ученым предстоит совершить еще множество неожиданных открытий, чтобы по-настоящему понять процесс возникновения Вселенной и объяснить все существующие противоречия текущей научной парадигмы.




    Однако пытливые умы, не желающие ждать пока современная наука выберется из всех созданных ею ловушек, могут уже сегодня найти ответы на все вопросы в книге Анастасии Новых «АллатРа». Все, что касается теории Большого взрыва и процесса возникновения Вселенной, описано в этой книге доступным языком, а все противоречия легко разрешаются. Многое кажется неожиданным и даже сенсационным, однако справедливость изложенной информации не вызывает сомнений. Можно сказать, что истина лежит на поверхности, нужно просто захотеть ее увидеть. И сейчас у вас есть такая возможность, ведь книги Анастасии Новых можно скачать абсолютно бесплатно на нашем сайте.

    Читайте об этом подробнее в книгах Анастасии Новых

    (кликните на цитату, чтобы бесплатно скачать книгу целиком):

    Ригден: Это действительно так. И отвечая на заданный вопрос, я затрону лишь несколько весьма важных тем астрофизики, естественно, в доступной для мышления человека форме. Но понимание сути сказанного способно дать людям науки глобально иной взгляд на мироустройство.

    Начну с шаблонной для нынешнего образованного ума современной теории-предположения о Большом взрыве, который произошёл, как считают учёные, при рождении Вселенной. Эту популярную гипотетическую теорию они аргументируют законами термодинамики. Согласно данному предположению, Вселенная была сжата в точку, а после её Взрыва появились объекты массой около миллиарда тонн и размерами с протон.

    Анастасия: Как говорится, что знают на сегодняшний день, тем и аргументируют. Учёные полагают, что они достаточно хорошо освоили этот раздел физики, изучающий законы теплового равновесия и превращения теплоты в другие виды энергии. Да и сам термин ≪ термодинамика ≫ в переводе с греческого языка очень хорошо характеризует их споры в научной среде: ≪ therme ≫ - ≪ жар ≫ , ≪ тепло ≫ ; ≪ dynamikos ≫ - ≪ сильный ≫ . Там, что ни дискуссия, то пыл да жар.

    - Анастасия НОВЫХ - "АллатРа" Илья Хель

    Терри Пратчетт описал традиционный взгляд на создание Вселенной примерно так: «В начале было ничего, которое взорвалось». Современная точка зрения космологии подразумевает, что расширяющаяся Вселенная возникла в результате Большого Взрыва, и она хорошо поддерживается доказательствами в виде реликтового излучения и смещением далекого света в направлении красной части спектра: Вселенная расширяется постоянно.

    И все же далеко не всех удалось в этом убедить. В течение многих лет предлагались самые разные альтернативы и различные мнения. Некоторые интересные предположения остаются, увы, непроверяемыми с применением наших современных технологий. Другие представляют собой полеты фантазии, восставшей против непостижимости Вселенной, которая, кажется, бросает вызов человеческим представлениям о здравом смысле.


    Теория стационарной Вселенной

    Согласно недавно восстановленной рукописи Альберта Эйнштейна, великий ученый отдал дань уважения британскому астрофизику Фреду Хойлу за теорию о том, что пространство может расширяться в течение неопределенного времени, сохраняя равномерную плотность, если постоянно будет появляться новая материя в процессе спонтанной генерации. В течение многих десятилетий многие считали идеи Хойла ерундой, но недавно обнаруженный документ показывает, что Эйнштейн как минимум серьезно рассматривал его теорию.

    Теорию стационарной Вселенной была предложена в 1948 году Германом Бонди, Томасом Голдом и Фредом Хойлом. Она вышла из идеального космологического принципа, который гласит, что вселенная выглядит по существу одинаково в каждой точке в любое время (в макроскопическом смысле). С философской точки зрения он привлекателен, поскольку тогда у вселенной нет начала и конца. Теория была популярна в 50-60-х годах. Столкнувшись с указаниями на то, что Вселенная расширялась, ее сторонники предположили, что во вселенной постоянно рождается новая материя, в постоянном, но умеренном темпе — несколько атомов на кубический километр в год.

    Наблюдения квазаров в далеких (и старых, с нашей точки зрения) галактиках, которых в наших звездных окрестностях не существует, охладили энтузиазм теоретиков, и ее окончательно развенчали, когда ученые обнаружили космическое фоновое излучение. Тем не менее, хотя теория Хойла не принесла ему лавров, он провел серию исследований, которые показали, как во вселенной появились атомы тяжелее гелия. (Они появились в процессе жизненного цикла первых звезд при высоких температурах и давлении). По иронии судьбы, он также был одним из создателей термина «большой взрыв».

    Утомленный свет

    Эдвин Хаббл заметил, что длины волн света далеких галактик смещаются в направлении красной части спектра, если сравнивать со светом, излученным звездными телами поблизости, что говорит об утрате фотонами энергии. «Красное смещение» объясняется в контексте расширения после Большого Взрыва как функция эффекта Доплера. Сторонники моделей стационарной вселенной вместо этого предположили, что фотоны света теряют энергию постепенно по мере движения через космос, переходя к длинным волнам, менее энергетическим в красном конце спектра. Эту теорию впервые предложил Фриц Цвикки в 1929 году.

    С утомленным светом связывают целый ряд проблем. Во-первых, нет никакого способа изменить энергию фотона без изменения его импульса, что должно приводить к эффекту размытия, который мы не наблюдаем. Во-вторых, он не объясняет наблюдаемые паттерны излучения света сверхновых, которые прекрасно соотносятся с моделью расширяющейся вселенной и специальной относительности. Наконец, большинство моделей утомленного света базируются на нерасширяющейся вселенной, но это приводит к спектру фонового излучения, который не соответствует нашим наблюдениям. В численном выражении, если бы гипотеза утомленного света была корректной, вся наблюдаемая радиация космического фона должна была бы приходить из источников, которые ближе к нам, чем галактика Андромеды (ближайшая к нам галактика), а все, что за ней, было бы для нас невидимо.

    Вечная инфляция

    Большинство современных моделей ранней Вселенной постулируют короткий период экспоненциального роста (известный как инфляция), вызванный энергией вакуума, в процессе которого соседствующие частицы оказались быстро разделенными огромными областями пространства. После этой инфляции, энергия вакуума распалась на горячий плазменный бульон, в котором образовались атомы, молекулы и так далее. В теории вечной инфляции этот процесс инфляции никогда не заканчивался. Вместо этого пузыри пространства прекратили бы раздуваться и вступили бы в низкоэнергетическое состояние, чтобы после расшириться в инфляционном пространстве. Такие пузыри были бы подобны пузырям пара в кипящей кастрюле с водой, только в этот раз кастрюля постоянно увеличивалась бы.

    По этой теории наша Вселенная — один из пузырьков множественной вселенной, характеризующейся постоянной инфляцией. Один из аспектов этой теории, который можно было бы проверить, это допущение, что две вселенные, которые будут достаточно близко, чтобы встретиться, вызовут нарушения в пространстве-времени каждой вселенной. Лучшей поддержкой такой теории будет обнаружение доказательства такого нарушения на фоне реликтового излучения.

    Первую инфляционную модель предложил советский ученый Алексей Старобинский, но на западе известной она стала благодаря физику Алану Гуту, который предположил, что ранняя вселенная могла переохладиться и позволить экспоненциальному росту начаться еще до Большого Взрыва. Андрей Линде взял эти теории и разработал на их основе теорию «вечного хаотического расширения», согласно которой вместо необходимости Большого Взрыва, при необходимой потенциальной энергии, расширение может начаться в любой точки скалярного пространства и происходить постоянно во всей мультивселеннной.

    Вот что говорит Линде: «Вместо вселенной с одним законом физики, вечная хаотическая инфляция предполагает самовоспроизводяющуюся и вечно существующую мультивселенную, в которой все возможно».

    Мираж четырехмерной черной дыры

    Стандартная модель Большого Взрыва утверждает, что Вселенная взорвалась из бесконечно плотной сингулярности, но это не облегчает задачу объяснения ее почти однородной температуры, учитывая относительно короткое время (по меркам космоса), которое прошло со времен этого жестокого события. Некоторые считают, что это могла бы объяснить неизвестная форма энергии, которая привела к тому, что вселенная расширилась быстрее скорости света. Группа физиков из Института теоретической физики Периметра предположила, что вселенная может быть по сути трехмерным миражом, созданным на горизонте событий четырехмерной звезды, коллапсирующей в черную дыру.

    Ниайеш Афшорди и его коллеги изучали предложение 2000 года, сделанное командой Университета Людвига Максимилиана в Мюнхене, на тему того, что наша Вселенная может быть лишь одной мембраной, существующей в «объемной вселенной» с четырьмя измерениями. Они решили, что если эта объемная вселенная также содержит четырехмерные звезды, они могут вести себя подобно своим трехмерным коллегам в нашей вселенной — взрываясь в сверхновые и коллапсируя в черные дыры.

    Трехмерные черные дыры окружены сферической поверхностью — горизонтом событий. В то время как поверхность горизонта событий трехмерной черной дыры двумерна, форма горизонта событий четырехмерной черной дыры должна быть трехмерной — гиперсферой. Когда команда Афшорди смоделировала смерть четырехмерной звезды, она обнаружила, что извергаемый материал образовал трехмерную брану (мембрану) вокруг горизонта событий и медленно расширился. Команда предположила, что наша Вселенная может быть миражом, сформированным из обломков внешних слоев четырехмерной коллапсирующей звезды.

    Поскольку четырехмерная объемная вселенная может быть намного старше, или даже бесконечно старой, это объясняет однородную температуру, наблюдаемую в нашей Вселенной, хотя некоторые из последних данных свидетельствуют о том, что могут быть отклонения, вследствие которых традиционная модель подходит лучше.

    Зеркальная Вселенная

    Одна из запутанных проблем физики такова, что почти все принятые модели, включая гравитацию, электродинамику и относительность, работают одинаково хорошо в описании Вселенной, независимо от того, идет время вперед или назад. В реальном же мире мы знаем, что время движется лишь в одном направлении, и стандартное объяснение этому в том, что наше восприятие времени есть лишь продукт энтропии, в процессе которой порядок растворяется в беспорядке. Проблема этой теории в том, что из нее вытекает, что наша Вселенная начала с высокоупорядоченного состояния и низкой энтропии. Многие ученые несогласны с понятием низкоэнтропийной ранней вселенной, фиксирующей направление времени.

    Джулиан Барбур из Оксфордского университета, Тим Козловски из Университета Нью-Брансвик и Флавио Меркати из Института теоретической физики Периметра разработали теорию, согласно которой гравитация привела к тому, что время стало течь вперед. Они изучили компьютерное моделирование частиц в 1000 точек, взаимодействующих между собой под влиянием ньютоновой гравитации. Выяснилось, что независимо от их размера или размера, частицы в конечном итоге образуют состояние низкой сложности с минимальным размером и максимальной плотностью. Затем эта система частиц расширяется в обоих направлениях, создавая две симметричных и противоположных «стрелы времени», а с ней и более упорядоченные и сложные структуры по обе стороны.

    Это позволяет предположить, что Большой Взрыв привел к созданию не одной, а двух вселенных, в каждой из которых время течет в противоположную от другой сторону. По мнению Барбура:

    «Эта ситуация с двумя будущими будет демонстрировать единое хаотичное прошлое в обоих направлениях, означая, что будет по сути две вселенных, по каждую сторону центрального состояния. Если они будут достаточно сложными, обе стороны будут поддерживать наблюдателей, которые смогут воспринимать течение времени в обратном направлении. Любые разумные существа определят свою стрелу времени как удаление от центрального состояния. Они будут думать, что мы сейчас живем в их далеком прошлом».

    Конформная циклическая космология

    Сэр Роджер Пенроуз, физик Оксфордского университета, считает, что Большой Взрыв не был началом Вселенной, а лишь переходом по мере того, как она проходит через циклы расширения и сжатия. Пенроуз предположил, что геометрия пространства изменяется со временем и становится все более запутанной, как описывает математическое понятие тензора кривизны Вейля, который начинается с нуля и увеличивается со временем. Он считает, что черные дыры действуют, уменьшая энтропию Вселенной, и когда последняя достигает конца расширения, черные дыры поглощают материю и энергию и, в конце концов, друг друга. По мере распада материи в черных дырах, она исчезает в процессе излучения Хокинга, пространство становится однородным и наполненным бесполезной энергией.

    Это приводит к понятию конформной инвариантности, симметрии геометрий с разными масштабами, но одной формы. Когда Вселенная уже не сможет соответствовать изначальным условиям, Пенроуз считает, что конформное преобразование приведет геометрию пространства к сглаживанию, и деградировавшие частицы вернутся к состоянию нулевой энтропии. Вселенная коллапсирует сама в себя, готовая разразиться новым Большим Взрывом. Отсюда следует, что Вселенная характеризуется повторяющимся процессом расширения и сжатия, который Пенроуз поделил на периоды под названием «эоны».

    Панроуз и его партнер, Ваагн (Ваге) Гурзадян из Ереванского физического института в Армении, собрали спутниковые данные NASA о реликтовом излучении и заявили, что нашли 12 четких концентрических колец в этих данных, которые, по их мнению, могут быть доказательством гравитационных волн, вызванных столкновением сверхмассивных черных дыр в конце предыдущего эона. Пока это главное доказательство теории конформной циклической космологии.

    Холодный Большой Взрыв и сжимающаяся Вселенная

    Стандартная модель Большого Взрыва говорит, что после того, как вся материя взорвалась из сингулярности, она раздулась в горячую и плотную Вселенную и начала медленно остывать в течение миллиардов лет. Но эта сингулярность создает ряд проблем, когда ее пытаются впихнуть в общую теорию относительности и квантовую механику, поэтому космолог Криштоф Веттерих из Университета Гейдельберга предположил, что Вселенная могла начаться с холодного и огромного пустого пространства, которое становится активным лишь потому, что сжимается, а не расширяется в соответствии со стандартной моделью.

    В этой модели, красное смещение, наблюдаемое астрономами, может быть вызвано увеличением массы вселенной по мере сжатия. Свет, излученный атомами, определяется массой частиц, больше энергии проявляется по мере движения света в голубую часть спектра и меньше — в красную.

    Главная проблема теории Веттериха в том, что ее невозможно подтвердить измерениями, поскольку мы сравниваем лишь соотношения различных масс, а не самих масс. Один физик пожаловался, что эта модель сродни утверждению, что не Вселенная расширяется, а линейка, которой мы ее измеряем, сжимается. Веттерих говорил, что не считает свою теорию заменой Большому Взрыву; он лишь отмечал, что она соотносится со всеми известными наблюдениями Вселенной и может быть более «естественным» объяснением.

    Круги Картера

    Джим Картер — ученый-любитель, разработавший личную теорию о вселенной, основанную на вечной иерархии «цирклонов», гипотетических круглых механических объектов. Он считает, что всю историю Вселенной можно объяснить как поколения цирклонов, развивающихся в процессе воспроизводства и деления. К такому выводу ученый пришел после наблюдения идеального кольца пузырьков, выходящих из его дыхательного аппарата, когда он занимался подводных плаванием в 1970-х годах, и отточил свою теорию экспериментами с участием контролируемых колец дыма, мусорных баков и резиновых листов. Картер считал их физическим воплощением процесса под названием цирклонная синхронность.

    Он говорил, что цирклонная синхронность являет собой лучшее объяснение создания Вселенной, нежели теория Большого Взрыва. Его теория живой вселенной постулирует, что хотя бы один атом водорода существовал всегда. В начале один атом антиводорода плавал в трехмерной пустоте. У этой частицы была такая же масса, как и у всей вселенной, и состояла она из положительно заряженного протона и отрицательно заряженного антипротона. Вселенная пребывала в завершенной идеальной дуальности, но отрицательный антипротон гравитационно расширялся чуть быстрее, чем положительный протон, что приводило к потере им относительной массы. Они расширялись по направлению друг к другу, пока отрицательная частица не поглотила положительную, и они не сформировали антинейтрон.

    Антинейтрон тоже был несбалансирован по массе, но в конечном итоге вернулся в равновесие, что привело к расщеплению его на два новых нейтрона из частицы и античастицы. Этот процесс вызвал экспоненциальный рост числа нейтронов, некоторые из которых уже не расщеплялись, а аннигилировали в фотоны, которые легли в основу космических лучей. В конечном итоге вселенная стала массой стабильных нейтронов, которые существовали определенное время перед распадом, и позволили электронам впервые объединиться с протонами, образовав первые атомы водорода и наполнив вселенную электронами и протонами, активно взаимодействующими с образованием новых элементов.

    Немного безумия не повредит. Большинство физиков считает идеи Картера бредом неуравновешенного, который даже не подлежит эмпирическому обследованию. Эксперименты Картера с кольцами дыма использовались в качестве доказательства ныне дискредитированной теории эфира 13 лет назад.

    Плазменная Вселенная

    Если в стандартной космологии гравитация остается главной управляющей силой, в плазменной космологии (в теории электрической вселенной) большая ставка делается на электромагнетизм. Одним из первых сторонников этой теории был русский психиатр Иммануил Великовский, который написал в 1946 году работу под названием «Космос без гравитации», в которой заявил, что гравитация — это электромагнитный феномен, вытекающий из взаимодействия между зарядами атомов, свободными зарядами и магнитных полей солнца и планет. В дальнейшем эти теории прорабатывал уже в 70-х годах Ральф Юргенс, утверждавший, что звезды работают на электрических, а не на термоядерных процессах.

    Существует много итераций теории, но ряд элементов остается одним. Теории плазменной вселенной утверждают, что Солнце и звезды электрически питаются дрейфовыми токами, что некоторые особенности планетарной поверхности вызываются «сверхмолниями» и что хвосты комет, марсианские пыльные дьяволы и образование галактик — все это электрические процессы. По этим теориям, глубокий космос заполнен гигантскими нитями электронов и ионов, которые скручиваются вследствие действия электромагнитных сил в космосе и создают физическую материю вроде галактик. Плазменные космологи допускают, что Вселенная бесконечна в размере и возрасте.

    Одной из самых влиятельных книг на эту тему стала «Большого Взрыва никогда не было», написанная Эриком Лернером в 1991 году. Он утверждал, что теория Большого Взрыва неправильно предсказывает плотность легких элементов вроде дейтерия, лития-7 и гелия-4, что пустоты между галактиками слишком велики, чтобы их можно было объяснить временными рамками теории Большого Взрыва, и что яркость поверхности далеких галактик наблюдается как постоянная, тогда как в расширяющейся вселенной эта яркость должна уменьшаться с расстоянием вследствие красного смещения. Он также утверждал, что теория Большого Взрыва требует слишком много гипотетических вещей (инфляция, темная материя, темная энергия) и нарушает закон сохранения энергии, поскольку Вселенная якобы родилась из ничего.

    Напротив, говорит он, теория плазмы правильно предсказывает изобилие легких элементов, макроскопическую структуру Вселенной и поглощение радиоволн, являющихся причиной космического микроволнового фона. Многие космологи утверждают, что лернеровская критика космологии Большого Взрыва базируется на понятиях, которые считались неправильными на момент написания его книги, и на его объяснениях, что наблюдения космологов Большого Взрыва приносят больше проблем, чем могут решить.

    Бинду-випшот

    Пока мы не затрагивали религиозные или мифологические истории сотворения вселенной, но сделаем исключение для индуистской истории создания, поскольку ее можно с легкостью увязать с научными теориями. Карл Саган однажды сказал, что это «единственная религия, в которой временные рамки отвечают современной научной космологии. Ее циклы переходят от наших обычных дня и ночи до дня и ночи Брахмы, длиной в 8,64 миллиарда лет. Дольше, чем существовала Земля или Солнце, почти половина времени с момента Большого Взрыва».

    Ближайшая к традиционной идее Большого Взрыва вселенной обнаруживается в индуистской концепции бинду-випшот (буквально «точка-взрыв» на санскрите). Ведические гимны древней Индии гласили, что бинду-випшот произвел звуковые волны слога «ом», который означает Брахмана, Абсолютную Реальность или Бога. Слово «Брахман» имеет санскритский корень brh, означающий «большой рост», что можно связать с Большим Взрывом, согласно писанию Шабда Брахман. Первый звук «ом» интерпретируется как вибрация Большого Взрыва, обнаруженная астрономами в форме реликтового излучения.

    Упанишады объясняют Большой Взрыв как одно (Брахман), желающее стать многим, чего он и достиг за счет большого взрыва как усилия воли. Создание часто изображается как лила, или «божественная игра», в том смысле, что вселенная создавалась как часть игры, и запуск в виде большого взрыва тоже был ее частью. Но разве игра будет интересной, если в ней будет всеведущий игрок, знающий, как она будет проходить?

    По материалам listverse.com

    Группой астрономов, работающих в Европейской Южной обсерватории, а также в обсерваториях Франции и Индии, впервые получено экспериментальное подтверждение правильности теории Большого взрыва. Они определили температуру фонового микроволнового космического излучения в тот момент, когда возраст Вселенной составлял всего 2,5 млрд лет. Если Вселенная действительно была образована в результате Большого взрыва, то ее первичный огненный шар должен был бы в прошлом иметь более высокую температуру, чем сейчас.

    Для подтверждения этого предположения с помощью спектрографа UV-Visual Echelle Spectrograph (UVES), установленном на 8,2-метровом телескопе VLT Kueyen в Европейской Южной обсерватории, был получен спектр излучения далекого квазара PKS 1232+0815. Анализ этого спектра показал, что в молодой Вселенной действительно имело место реликтовое излучение, причем его температура была выше, чем нынешние 2,7 градусов К. Для измерений использовались некоторые линии поглощения нейтральных атомов углерода. Исследования показали, что, когда Вселенной было около 2,5 млрд лет, температура реликтового излучения лежала в пределах между 6 и 14 градусами К, что соответствует данным теории Большого взрыва (9 градусов К).

    Реликтовое излучение было предсказано теоретически в 40-х годах, а открыто оно было с помощью радиотелескопа в 1965 г. американскими физиками Арно Пензиасом (Arno A. Penzias) и Робертом Уилсоном (Robert W. Wilson). За это открытие они в 1978 г. получили Нобелевскую премию.